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Learning Deep Sharable and Structural
Detectors for Face Alignment

Hao Liu, Jiwen Lu, Senior Member, IEEE, Jianjiang Feng, Member, IEEE, and Jie Zhou, Senior Member, IEEE

Abstract— Face alignment aims at localizing multiple facial
landmarks for a given facial image, which usually suffers from
large variances of diverse facial expressions, aspect ratios and
partial occlusions, especially when face images were captured
in wild conditions. Conventional face alignment methods extract
local features and then directly concatenate these features for
global shape regression. Unlike these methods which cannot
explicitly model the correlation of neighbouring landmarks and
motivated by the fact that individual landmarks are usually
correlated, we propose a deep sharable and structural detec-
tors (DSSD) method for face alignment. To achieve this, we firstly
develop a structural feature learning method to explicitly exploit
the correlation of neighbouring landmarks, which learns to
cover semantic information to disambiguate the neighbouring
landmarks. Moreover, our model selectively learns a subset
of sharable latent tasks across neighbouring landmarks under
the paradigm of the multi-task learning framework, so that
the redundancy information of the overlapped patches can
be efficiently removed. To better improve the performance,
we extend our DSSD to a recurrent DSSD (R-DSSD) architecture
by integrating with the complementary information from multi-
scale perspectives. Experimental results on the widely used bench-
mark datasets show that our methods achieve very competitive
performance compared to the state-of-the-arts.

Index Terms— Face alignment, deep learning, biometrics.

I. INTRODUCTION

FACE alignment (a.k.a. facial landmark detection) aims
at localizing multiple facial landmarks for a given facial

image, which is a key step for many facial analysis tasks,
such as face verification [1], [2], face recognition [3] and
facial attribute analysis [4]. While extensive efforts have been
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devoted, face alignment still remains a challenging problem
due to large variations of facial expressions, aspect ratios and
diverse partial occlusions.

Conventional face alignment methods can be categorized
into two classes: discriminative fitting-based and cascaded
regression-based. Discriminative fitting-based methods [5]–[7]
estimate facial landmarks by maximizing the joint poste-
rior probability over all landmarks for a given face image.
However, these methods are usually slow in terms of the
efficiency compared with the improvements in the accuracy.
To address this, cascaded regression-based methods [8]–[12]
learn to seek a series of simple feature-to-shape map-
pings to refine the initial shape to the final shape progres-
sively. While these methods have achieved fast alignment
speed [9]–[11], their performance is still not satisfying because
these methods usually employ linear feature-to-shape map-
pings, so that they are not powerful enough to directly
model the nonlinear relationship between face samples and
facial shapes. Moreover, the features employed in these meth-
ods are hand-crafted, which requires strong prior knowl-
edge by hand. To address both issues, deep learning has
been employed for face alignment [13]–[21], which formu-
lates face alignment as a cascaded regression problem and
employs the deep neural networks to exploit the complex
and nonlinear image-to-shape mappings. However, previous
face alignment methods may incur the ambiguity between
neighbouring landmarks due to the lack of local discriminative
information, because the concatenation of these local fea-
tures cannot explicitly model the correlation of neighbouring
landmarks. Moreover, the cropped pose-index patches are
usually overlapped because of the correlated landmarks, which
occurs some redundancy information for facial landmark
localization.

Unlike conventional face alignment methods which cannot
explicitly exploit the correlation of neighbouring landmarks
and motivated by the individual facial landmarks are usually
correlated especially for densely mark-up facial landmarks,
in this paper, we propose a deep sharable and structural detec-
tors (DSSD) method, where both the structural and sharable
information are exploited for facial landmark localization.
Specifically, we first develop a structural feature learning
method to learn discriminative features directly from raw
local patches, which enlarges the window sizes to cover the
semantic information, e.g., facial part-based details covering
eyes, nose, mouths and partial face counter, and disambiguates
the positions of neighbouring landmarks. Moreover, our model
employs a multi-task learning framework to selectively learn
a subset of latent tasks shared across neighbouring landmarks
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Fig. 1. The work-flow of the proposed DSSD. Shape-index patches cropped from each face image are fed into a tiny CNN deep network, which
consists of two convolution layers and two fully-connected layers, respectively. As a result, each shape-index patch is encoded as a local feature fl by the
CNN feature extractor H1 and is further re-weighted with the fully connected layers H2 as φl by using the structural feature learning method. Face alignment
aims to localize the landmarks by the shape regressor W = [w1, w2, · · · , wl , · · · , wL ], where each landmark position pl can be obtained by feeding φl to
the landmark detector. In our work, the goal of the sharable detectors is to decompose W into two sparse matrix P and C, where each landmark detector
can be represented by a few sharable latent detectors. Lastly, we develop a nonlinear regression by using a feed-forward neural network Q to preserve the
holistic structure of the facial shape.

in order to eliminate the redundancy information caused
by the overlapped patches. Lastly, we employ a nonlinear
regression following the outcomes of the sharable detectors,
which preserves the global facial shape structure and addresses
the face images versus diverse partial occlusions. To better
improve the alignment performance, we extend our DSSD
to a recurrent DSSD (R-DSSD) architecture, which shares a
sequential series of parameters stage by stage and embeds the
complementary information with multi-scale facial images for
coarse-to-fine face alignment. In order to train the proposed
model, both the structural feature learning and the sharable
detectors are jointly learned under a unified deep convolutional
neural networks (CNN) framework, where the parameters of
the sharable detectors are obtained by the two-stage iteration
method and those of the deep neural networks are opti-
mized via back-propagation. Fig. 1 shows the main work-flow
of our proposed model. Experimental results on the public
300-W dataset [22] show that the proposed models obtains
very competitive performance compared with the state-of-the-
art face alignment methods in terms of both the accuracy and
efficiency.

The main contributions of this work are summarized as
follows:

1) We develop a structural feature learning method to explic-
itly model the correlation of neighbouring landmarks,
which learns to cover the semantic details to disambiguate
the positions of neighbouring landmarks.

2) We propose a multi-task learning method to learn a
subset of latent tasks shared across neighbouring land-
marks, so that the redundancy information caused by the
overlapped patches is efficiently removed during facial
landmark localization.

3) To further improve the performance, our recurrent exten-
sion tackles the coarse-to-fine face alignment problem,
where the capacity of the deep model is efficiently con-
trolled and the complementary information is extracted
from the multi-scale inputs.

II. RELATED WORK

In this section, we briefly review conventional face align-
ment and face alignment by deep learning, respectively

A. Conventional Face Alignment

Conventional face alignment methods can be mainly clas-
sified into two categories: discriminative fitting based and
cascaded regression based methods. The discriminative fitting
based methods [5], [6], [23], [24] build a holistic fitting
template to fit the facial shape for a given input image.
Representative methods in this class include active shape
model (ASM) [5], active appearance model (AAM) [6], con-
strained local model (CLM) [7] and Guass-Newton deformable
part model (GN-DPM) [24]. However, since they adopted
multiple SVR regressors (or SVM classifiers), their speed
was usually slow and their computation load were heavy. The
cascaded regression based approaches [8]–[12], [23], [25], [26]
learn a series of linear feature-to-shape mappings to refine
the predicted shape progressively. For example, Cao et al. [9]
proposed an explicit shape regression method (ESR) for
face alignment by using the boosting tree-based feature
selection approach. Xiong et al. [8] proposed a supervised
decent method (SDM) to learn a sequence of feature-to-
shape mapping functions to refine the facial shapes. Recently,
Zhu et al. [12] developed a coarse-to-fine shape searching
approach (CFSS) to gradually narrow down the possible shape
space, which exhibits a superior performance on the alignment
accuracy. Besides, Zhu and Ramanan [27] showed that face
detection, landmark detection and pose estimation can be
jointly addressed under a unified framework. Zhang et al. [17]
formulated face detection and face alignment as a multi-
task learning problem. Nevertheless, the features employed in
these methods are hand-crafted, which are arguably weak to
represent local patches and require strong prior knowledge by
hand. Moreover, their feature-to-pose mapping functions are
either linear or ferns/trees based indexing, which are insuffi-
cient to handle realistic facial variations. To address this, our
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model automatically extracts useful and discriminative features
directly from pixels by integrating the sharable and structural
information under a unified deep learning architecture.

B. Face Alignment by Deep Learning

Recently, deep learning has been an active topic in machine
learning and computer vision, which shows superior perfor-
mance in many visual analysis tasks such as handwritten
digit recognition [28], [29], object detection [30], [31], visual
tracking [32] and scene labeling [33], [34]. More recently, deep
learning has been adopted to face alignment [13], [14], [16],
[19], [20], [35], [36]. For example, Sun et al. [13] proposed
a deep convolutional networks cascaded method (DCNC)
for facial shape refinement, which consists of one shape
initialization stage and two shape refinement stages. However,
the cascaded CNN method performs individual refinement for
each landmark, which is sensitive to the previous prediction.
To address this, several works [16], [19], [36], [37] have
been proposed to concatenate the shape-index features to
estimate the landmark locations in a coarse-to-fine manner.
For example, Zhang et al. [16] presented a coarse-to-fine
auto-encoder networks (CFAN) method to refine the land-
mark locations iteratively. Lai et al. [36] proposed a deep
cascaded regression method for face alignment (DCRFA)
under the encoder-decoder (deconvolution) neural networks.
Trigeorgis et al. [35] developed a mnemonic descent
method (MDM) by employing a recurrent process which
was applied for end-to-end face alignment.1 However, these
models fail to extract the structural information because the
extracted features are simply concatenated together to learn the
deep models and the correlation of neighbouring landmarks
cannot be explicitly exploited. In contrast to these previous
methods, we propose structural and sharable detectors in this
work to explicitly achieve the correlation of neighbouring
landmarks, which reduces the ambiguity for the positions of
the neighboring landmarks. Moreover, the proposed model
efficiently eliminates the redundancy information caused by
the overlapped patches. Experimental results show the effec-
tiveness of the proposed methods in comparisons with most
of the state-of-the-art face alignment approaches.

III. PROPOSED METHOD

In this section, we describe our methods DSSD and R-
DSSD in details.

A. Deep Sharable and Structural Detectors

Conventional cascaded regression methods [8]–[10] employ
hand-crafted feature representations and linear feature-to-
shape mapping functions, which are not powerful enough to
model the complex and nonlinear relationship between face
samples and facial shapes. To address this limitation, deep
learning has been applied to face alignment [13], [15], [16],
which aims to seek a series of deep nonlinear feature-to-
shape mappings to model the nonlinear relationship between

1At the time writing, we do not have access to the full paper of
Trigeorgis et al. [35] and therefore cannot take advantage of this work in
our experimental comparisons.

Fig. 2. For the left face image, the white points indicate the current locations
and the red points denote the ground-truth. Both the right hand views are the
enlarged windows cropped from the left face image, which show the insuffi-
ciency for the local regressor that predicts the local landmarks independently
without considering the relationship among landmarks. Intuitively, based on
the local patch inputs, the local detectors may incorrectly adjust current
position onto yellow points which are close to the true landmarks in both
appearance and location. Moreover, the concatenating pose-index features-
based methods cannot work well due to the redundancy information (marked
in magenta rectangles) which is caused by the correlated and overlapped
patches (best viewed in the color pdf file).

face images and facial shapes. Nevertheless, the detection
accuracy usually degrades due to the correlation of neigh-
bouring landmarks. Moreover, the cropped local patches are
usually overlapped, which causes the redundancy information
located at the overlapping regions across the adjacent patches.
As a result, the redundancy might be ambiguous for facial
landmark localization, especially for neighbouring landmarks.
Fig. 2 demonstrates the intuitive examples. To address both
issues, in this paper, we propose a structural feature learning
and the sharable detectors, where the structural and sharable
information across neighbouring landmarks are exploited for
facial landmark localization. We detail the proposed model in
the following parts.

Suppose that we have a training set {(Xi , Si )}Ni=1 containing
N training samples and an initial shape S0

i , where Xi denotes
the i th face image consisting of a set of shape-index patches
[x1, x2, · · · , xl , · · · , xL], where xi denotes the i th patch of
D pixels, and Si = [p1, p2, · · · , pl , · · · , pL ]i ∈ R

L denotes
the corresponding facial landmarks containing L landmarks,
where pl ∈ R

2 denotes lth landmark coordinates. In this work,
we map the face image to the facial shape residual (S∗i − S0

i ),
which is formulated as the following minimization objective
function:

min
N∑

i

1

2

∥∥∥(S∗i − S0
i )− R (Xi )

∥∥∥
2

2
(1)

where R(·) denotes the shape regression function, e.g.,
a linear/nonlinear regression [8], [9], [16], which maps
the facial shape coordinates from the appearance features.
In terms of the appearance features X in (1), conventional
methods [8]–[12], [15], [16] usually employ sampled local
features as input and jointly displace these features in a
shape-index order [22] to perform the global shape regression.
While they have directly addressed the global shape constraint
during landmark localization, they cannot explicitly model
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Fig. 3. The illustration of the structural feature learning, where two
parts including eyes and partial facial counter are cropped by involving
K neighbours. The red points denote the ground-truth landmarks while the
white circles denote the k-nearest neighbours marked by yellow points.
Let NK ( fl1 ) and NK ( fl2 ) denotes the l1th and l2th K -neighbour feature
concatenations. With the proposed structural feature learning method, we see
that the landmarks located surrounding the eye (the cropped patch on top)
automatically involves the facial part-based details for localization, while
those located along the facial counter (the cropped patch below) enlarge the
window to cover more details accordingly. Having obtained the learned feature
presentations φl1 and φl2 , we feed them to the proposed sharable detectors.
(best viewed in the color pdf file).

the correlation of neighbouring landmarks in such cases that
the overlapped patches encounter ambiguity during localizing
especially for the neighbouring landmarks.

1) Structural Feature Learning: To model the correlation of
neighbouring landmarks, we propose a structural feature learn-
ing method, which learns a set of discriminative local features
from neighbouring landmarks. Specifically, for each individual
landmark, our model aims to enlarge the cropping window
size by finding K nearest neighbours, which provides more
semantic details to disambiguate the positions of neighbouring
landmarks. As illustrated in Fig. 3, the cropping windows are
enlarged to cover the semantic facial parts such as the left
eye part when the landmarks surround the eye parts, while to
cover partial facial counter when the landmarks are located
alongside the facial counter edge.

To achieve this, we feed the shape-index local patches
to a designed CNN to extract the immediate feature repre-
sentation Fi = [ f1, f2, · · · , fl , · · · , fL ]i for the i th face.
For each landmark, we seek K nearest neighbours and re-
weight the features of the neighbouring landmarks as �i =
[φ1, φ2, · · · , φl , · · · , φL ]i by using a feed-forward neural net-
work, which is formulated as follows (ignoring bias):

fl = pool(ReLU (H1 ⊗ xl)) (2)

φl = σ (H2 · [NK ( fl)]vec) (3)

where NK (·) denotes the features in the K -nearest-neighbours,
[·]vec performs vector concatenating operation on these neigh-
bouring features, ⊗ denotes the CNN convolution, pool(·)
operates max pooling, and ReLU(·) denotes the nonlinear
function [38]. H2 denotes the re-weighting parameters with
the feed-forward neural networks and σ denotes the nonlinear
functions (we employ the tanh function). Having obtained the
learned features Fi , we directly feed them to the sharable
detectors P and C to predict the final shape. Furthermore,
we deploy a nonlinear regression parameterized by Q on the
outcomes of the sharable detectors (predicted landmarks) to
preserve the global shape structure, where the occluded facial
landmarks can be estimated by utilizing the non-occluded face
part via the global shape regression.

There are two strengths for the proposed structural feature
learning method: 1) The correlation of neighbouring land-
marks is exploited in the learned features, which reduces the
ambiguity for localizing neighbouring landmarks. 2) With the
designed K -neighbour structure, the cropping windows are
learned to enlarge and cover more semantic details to enhance
the discriminativeness of the learned features. Nevertheless,
the correlated and overlapped local patches incur some redun-
dancy information to the learned feature representation, which
may degrade the face alignment performance.

2) Sharable Detectors: To eliminate the redundancy infor-
mation, our model aims to learn a subset of latent tasks shared
by neighbouring landmarks under the paradigm of the multi-
task learning framework [39]. To achieve this, we enforce the
sparsity constraint to learn the sharable detectors instead of the
global regression mapping. As a result, the overlapped patches
are represented by a subset of sharable detectors which shares
some visual common pattern according to the appearance
information, and then the multiple landmarks are accurately
localized.

Let W = [w1, w2, · · · , wl , · · · , wL ] ∈ R
D×L denote the

parameters of the whole shape regression R(·), which is
incorporated with L coefficients. Let P = [P1, P2, . . . , PG ] ∈
R

D×G denote the matrix of the sharable basis, where each
column represents a latent component in R

D and G is the
number of latent sharable tasks, C = [c1, c2, . . . , cL ] ∈ R

G×L

denotes the weights to represent W based on the sharable
basis P. Hence, the lth coefficient wl of the global detector
can be represented as:

wl = Pcl (4)

To combine all weights for simplicity, we rewrite (4) as the
following matrix form:

W = PC (5)

To share knowledge across multiple landmarks, the goal of
the sharable detectors aims to learn P and C instead of directly
learning W. To achieve this, we apply the �1 norm to force
more elements in P and C to be 0. In this way, the latent
tasks only respond to a few particular feature patterns and the
remaining parameters are expected to represent the semantic
facial parts. Therefore, the redundancy information is removed
by employing the proposed sharable detectors.

3) Formulation: Based on the above discussions, we formu-
late the proposed goals as minimizing the following objective
function:

min{P,C,H,Q} J = J1(P, C, H, Q)+ J2(P, C)

=
G∑

j

N∑

i

1

2

∥∥∥S∗i − S0
i −Q

[(
Pc j

)T
�i

]∥∥∥
2

2

+
(
γ ‖C‖1 + β ‖P‖1 + μ ‖P‖2F

)
(6)

where Q[·] denotes the model parameters of two-layer feed-
forward neural networks, G is the number of the latent
sharable detectors, and γ , β and μ are used to balance
the triple regularization terms compared with regression loss.
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‖ · ‖1 denotes the entry-wise �1 norm of the sparsity of the
matrices P and C, which performs on the latent tasks where
some coefficients of the parameters P and C are enforced to
be 0. ‖ · ‖2F denotes the penalty of the Frobenius norm on P
to Preduce the �2 norm and avoid overfitting.

For (6), �i in term J1 learns the discriminative and struc-
tural features, where the correlation of neighbouring landmarks
and semantic information from nearer landmarks is explicitly
exploited. P and C in term J1 learns a subset of sharable
detectors, which reduces the redundancy information caused
by the overlapped local patches. Q in term J1 employs a
nonlinear regression function by using a feed-forward neural
network, which infers the occluded facial part from the non-
occluded facial part due to the global shape detector. The
sparsity regularization on both P and C in J2 enforces the
latent tasks to be selectively shared by each coefficient of the
global regression. The Frobenius norm on P in J2 controls
the model complexity and prevents the learned model from
overfitting.

4) Optimization: To optimize (6), we employ the standard
back-propagation [40] method for the model parameters H and
Q the with the learning rate λ (ignoring the offset term):

H← H− λ
∂ J

∂H
; Q← Q− λ

∂ J

∂Q
. (7)

Moreover, we optimize P and C by the standard back-
propagation algorithm with fixed H and Q. By ignoring H
and Q for simplicity, we can re-write (6) as follows:

min{P,C} J = J1(P, C)+ J2(P, C)

=
G∑

j

N∑

i

1

2

∥∥∥S∗i − S0
i −

(
Pc j

)T
�i

∥∥∥
2

2

+
(
γ ‖C‖1 + β ‖P‖1 + μ ‖P‖2F

)
. (8)

Obviously, (8) is not convex in C and P simultaneously.
Alternatively, we optimize P by fixed C and optimize C
by fixed P, iteratively. Since the �1 norm regularization
on P and C encounters the non-smooth optimization
problem, we introduce the accelerated proximal gradient
method (APG) [41] approach to address this. Following [41],
we optimize P and C in two steps:

Step 1: Optimizing P by fixed C.

min{P} J = J1 (P)+ J2(P)

=
G∑

j

N∑

i

(
1

2

∥∥∥S∗i − S0
i −

(
Pc j

)T
�i

∥∥∥
2

2

)

+ β ‖P‖1 + μ ‖P‖2F (9)

Since J1(P) is convex but J2(P) is non-smooth convex,
we employ the following update scheme [42] to solve (9):

Pτ = T μ
V

(
(P̂

τ
)− 1

V
∇P f (P̂

τ
)

)
(10)

where Tα is the shrinkage operator defined as:

Tα(‖z‖ − α)+sgn(z) (11)

Algorithm 1 DSSD

where V denotes the Lipschitz constant, which is computed
by the back-tracking line searching method. APG performs the
gradient of smooth part ∇P f (P̂

τ
) given the search point P̂

τ
for

the τ th iteration, and APG performs the linear combination of
two previous points for the next iteration. To be specific, given
two previous points Pτ−1 and Pτ−2, the search point P̂

τ−1

at the τ th iteration is Pτ−1 +
(

pτ−2−1
pτ−1

) (
Pτ−1 − Pτ−2).

p is initialized as 1 and updated by a fast iterative
shrinkage-thresholding algorithm [42], which is computed as

pτ = 1+
√

1+4(pτ−1)2

2 .
Step 2: Optimizing C by fixed P.

min{C} J = J1 (C)+ J2(C)

=
G∑

j

N∑

i

(
1

2

∥∥∥S∗i − S0
i −

(
Pc j

)T
�i

∥∥∥
2

2

)

+ γ ‖C‖1 (12)

where Cm is obtained by the gradient of the smooth part
∇C f (Ĉ

m
) given the search point Ĉ

m
as

Cτ = T μ
V

(
(Ĉ

τ
)− 1

V
∇C f (Ĉ

τ
)

)
. (13)

Algorithm 1 summarizes the detailed optimization proce-
dure of DSSD.
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B. Recurrent-DSSD

Existing methods [9], [10], [13], [15], [16] have employed
the coarse-to-fine manner to refine the predicted shape pro-
gressively. Differently, we extend our DSSD to a recurrent
architecture (R-DSSD), which shares the parameters across
different stages by exploiting the feature representations from
multi-scale perspective. To be specific, our R-DSSD model
consists of five stages: two coarse stages and three refinement
stages. For the coarse stage, we apply the random differ-
ence feature (RDF) [9], which shows superior efficiency on
face alignment. For the refinements stages, we extract the
discriminative feature representations to perform the shape
refinements. As a result, the recurrent architecture significantly
reduces the number of parameters and enhances the general-
ization ability of our method.

Let R denote the shape regressor, which specifically predicts
the landmark residual utilizing the face image X based on the
initial shape S0 up to the last stage (ignore the index i for the
i th face image).

R (X) = S0 +
T∑

t=1

Rt
(

X, St−1
)

(14)

where the whole shape is updated incrementally

St = S0 + Rt
(

X, St−1
)

(15)

for the stage t = 1, 2, . . . , T . The formulation to be optimized
can be summarized as follows:

J = J 1 (
Rc,�rd f

)+ J 2 (
R f ,�cnn

)+ J 3 (
R f ,�cnn

)
(16)

where Rc denotes the coarse stage with the random difference-
based feature �rd f and R f denotes the refinements stage with
the deep CNN feature �cnn .

To jointly learn the model parameters in (16), we optimize
H and Q by using back-propagation with fixed P and C.
Based on the optimization procedure of DSSD described in
Algorithm 1, the parameters P and C can be optimized by
APG [41]. To perform the joint learning via back-propagation,
the derivatives of the shape w.r.t. the loss and the derivatives of
the image w.r.t. the loss are computed for both the coarse and
refinements stages, respectively. Take one landmark for sim-
plicity, the derivatives of landmark p w.r.t. loss are calculated
as:

∂ J

∂p
= ∂X

∂p
∂ J

∂X
(17)

The scalar random pixel difference feature is computed as
follows:

ε = �(p, X) = X(p+ d1)− X(p+ d2), (18)

where I (p) denotes the pixel value located at the landmark p.
Furthermore, we have the derivatives w.r.t. landmark p as:

∂ε

∂p
= ∇X(p+ d1)−∇X(p+ d2). (19)

where I (p) denotes the 2D image gradient vector at the
point p.

Algorithm 2 R-DSSD

Likewise, we have the derivatives w.r.t. I as:

∂ε

∂X
= δ(p+ d1)− δ(p+ d2) (20)

where δ denotes the pulse response 0, 1, which takes
values 1 at each landmarks p and 0 at other positions.

The derivatives of landmark p w.r.t. loss are computed as:

∂X
∂p
= ∇(X(p+ d)) (21)

where ∇ is the gradient-image w.r.t the cropped image patch.
Since the derivatives of the pose-image are not strictly

differentiable for 2D images, the value is approximated by
the gradient of the image. Specifically, the ∇(X(p + d)) is
calculated by the Sobel operator in size of d × d which is
convolved on the image patches. The final result is summed
up by all of the gradients of each landmark. The derivatives
of the image w.r.t. the loss are:

∂ J

∂X
= ∂ε

∂X
∂ J

∂ε
(22)

where ∂ J
∂X is useless when the output is propagated to the

image. However, the derivatives of the image w.r.t. the loss
can help the visualization of the back-propagation procedure.

Algorithm 2 summarizes the detailed optimization proce-
dure of R-DSSD.
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Fig. 4. Structure specification of the deep CNN feature extractor.

IV. IMPLEMENTATION DETAILS

In this section, we describe the implementation details
including data preparation and network architecture,
respectively.

A. Data Preparation

For the face images to be aligned, we used the bounding
box downloaded from the IBUG website and enlarged the
downloaded bounding boxes by 30% on both the width and
the height. We resized all face images into 200×200 first and
subscaled them into 100× 100 and 50× 50, respectively. For
each ground-truth, we normalized it into the range of [0, 1].
To better improve the performance, we applied the robust
shape initialization (RSI) [36] approach to seek the specific
initial shape from the shape space via clustering. Specifically,
we firstly constructed 500 shape centers via the k-means
method on the training set, which covered a wide range of
the shapes including various poses, expressions and aspect
ratios. During the learning procedure, we aligned the ground-
truth to the cluster center as the initial shape. To enhance
the generation of our deep model, we performed the data
augmentation strategy [9] to generate more samples in the
training procedure.

B. Network Architecture

As illustrated in Fig. 4, we fed the cropped image patch
in size of 30× 30 as the input to the CNN feature extractor.
Hence, D for each shape-index patch was specified to 900.
In the first layer, we convolved it with 128 different 5×5 filters.
Each convolutional layer was followed by a nonlinear ReLU
function [38]. The obtained feature maps were downsampled
with a 2 × 2 max pooling operation. Similar operations were
repeated in the second layer. Following the convolution layers,
we applied 256-512 fully connections with a nonlinear tanh
function. Lastly, we employed 20-dim vector as the feature
for each local patch. For sharable detectors, we specified G
to 20 and K to 5 by the experimental cross validations.
We assigned the values of the weight decay, moment para-
meter and learning rate empirically to 0.0001, 0.9, and 0.01,
respectively. The parameters of the designed networks were
initialized by the normalized random initialization method [43]
as follows: as follows:

W(m) ∼ U

[
−

√
6√

r (m) + r (m−1)
,

√
6√

r (m) + r (m−1)

]
(23)

where the bias b(m) of the mth layer was set as 0, and r (m)

was the size of the mth layer.
To better initialize the model parameters employed

in DSSD, we first trained a linear SVM regressor to obtain
the global parameter H, then we computed the singular value
decomposition (SVD) for H to obtain H = ZPVT. The
initialization of the matrix P was given by the first G columns
of Z. In terms of the balanced parameters γ , μ and β in (6),
we conducted a cross validation to perform the parameter
selection. The whole training procedure of R-DSSD converged
in 15 iterations.

V. EXPERIMENTS

In this section, we conducted facial alignment experiments
to show the effectiveness of the proposed methods. The
followings describe the details of experimental results and
analysis.

A. Datasets

1) 300-W [22]: This dataset consists of various datasets
for face alignment, including the LFPW [46], HELEN [47],
AFW [27], XM2VTS [48] and IBUG [49] datasets with
annotated 68 landmarks. For fair comparisons, we trained
our model with the LFPW training set, the HELEN training
set, the AFW dataset and tested it on the LFPW testing set,
the HELEN testing set and the IBUG dataset, respectively.
In addition, we investigated our approaches on the testing
samples from the LFPW and HELEN datasets as the common
set and the 135-image IBUG dataset as the challenging set,
and the union of them as the full set (689 images in all).

2) COFW [44]: The Caltech Occluded Face in the
Wild (COFW) dataset consists of 1345 training face images
and 507 testing face images, which were collected from the
Internet. All face images are annotated with 29 landmarks
together with the visibility/invisibility information. We con-
ducted experiments and evaluated our methods only on its
testing set. Note that our model was trained on the training
samples from the 300-W dataset, without using any training
images from the COFW dataset.

B. Evaluation Protocols

Following the settings employed in [12], we utilized the
normalized root mean squared error (NRMSE), which was
normalized by the pupil distance to measure the error between
the predicted positions and the ground-truths. Hence, the point-
to-point NRMSE distance for each face image is computed as
follows:

NRMSE =

L∑
i=1

∥∥∥ppred
i − pgt

i

∥∥∥
2∥∥pleye − preye

∥∥
2

(24)

where ppred
i and pgt

i denote the i th landmark coordinates
of the predicted and ground-truth facial landmark positions
accordingly. pleye and preye denote the pupil locations of the
left eye and the right eye, respectively. Finally, we averaged
the NRMSEs for all testing face samples in our experiments
as the averaged error comparisons for evaluation.
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TABLE I

COMPARISONS OF THE AVERAGED ERRORS WITH THE STATE-OF-THE-ART APPROACHES (THE BEST PERFORMANCE ARE QUOTED IN THE BOLD TYPE
AND THE TOP-3 PERFORMANCE IN THE ITALIC TYPE). FOR MOST METHODS, WE DIRECTLY CROPPED THE REPORTED RESULTS FROM THE

RELATED LITERATURES OR EVALUATED BASED ON THE RELEASED CODES. OUR MODEL ACHIEVES VERY COMPETITIVE

PERFORMANCE COMPARED WITH THE STATE-OF-THE-ART FACE ALIGNMENT METHODS

Fig. 5. CED curves of face alignment approaches tested on the LFPW, HELEN and IBUG datasets, respectively, where 68 landmarks were employed for
evaluation.

We also applied the cumulative error distribution (CED)
curves of NRMSE to quantitatively evaluate the perfor-
mance of our methods with previous face alignment methods.
Let e denote the averaged error normalized by the pupil
distance and CED at the error l is computed as follows:

CED = Ne≤l

n
(25)

where Ne≤l is the number of images on which the error l is
no less than e.

C. Results and Analysis

1) Comparisons With State-of-the-Art Methods: We com-
pared our methods with fifteen state-of-the-art face alignment
methods including FPLL [27], DRMF [23], RCPR [44],
SDM [8], ESR [9], GN-DPM [24], ESR [9], LBF [10],
ERT [11], CFSS [12], CFAN [16], BPCPR [19], LTDR [52],
TCDCN [45], DFSM [20], Deep Reg [15] and DCRFA [36].
The standard implementations of other compared methods

were provided by the original authors except DCRFA and
DSFM because their codes have not been publicly released.
We carefully implemented DCRFA by following the settings
in [36] and we directly cropped the results for DFSM from
the original paper. As for our methods, we deployed two
architectures: R-DSSD∗ and R-DSSD. Specifically, R-DSSD∗
denotes the practical architecture with one RDF and two
CNNs, and R-DSSD denotes the architecture including two
RDF and three CNNs, which further improve the alignment
performance in accuracy. Table I shows the NRMSEs of
different face alignment approaches, which implicates that our
methods achieve very competitive performance compared with
the state-of-the-art methods. Fig. 5 shows the CED curves of
several face alignment approaches tested on various datasets.
According to the results, we see that our methods obtain the
best performance on the LFPW and HELEN datasets, and
even achieve very competitive results on the IBUG dataset.
Moreover, we illustrated the aligned results in Fig. 6. From
these example results, we see that our model exhibits superior
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Fig. 6. Example results in each row are aligned results for the samples in the LFPW, HELEN and IBUG datasets, respectively, where 68 landmarks were
employed for evaluation. According to these results, our model achieves superior performance even the face samples encounter diverse pose variations and
varying facial expressions.

capability of handling difficult cases with large facial aspect
ratios. In addition, we conducted experiments on the HELEN
dataset, where 192 landmarks were employed for evalu-
ation. As showed in Table I, we see that our methods
achieve comparable performance with TCDCN [45], when
denser landmarks were employed in our experiments. The
aligned example results for the 192 landmarks are shown
in Fig. 7.

2) Comparisons With Existing Deep Learning Based Face
Alignment Methods: We also compared our R-DSSD with sev-
eral recent deep learning based face alignment methods includ-
ing TCDCN [45], CFAN [16], DCRFA [36] and DFSM [20].
Specifically, TCDCN embedded the tasks of face detection

and face alignment with the multi-task learning method by
CNN, CFAN mapped the local features to the shape space
by utilizing deep auto-encoder networks, DCRFA applied
the deconvolution neural networks based cascaded regression
method for face alignment and DFSM modeled relationship
of both local and holistic shape constraints via the restricted
Boltzmann machine networks. Table II shows the failure rate
of the percentage of images that were correctly detected, where
the average error is 0.05 and 0.1, respectively. We see that
our method significantly outperforms the other compared deep
learning based methods on the LFPW and HELEN datasets,
even our model achieves comparable results on the IBUG
dataset.
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Fig. 7. Example results in each row are aligned results for the samples in the HELEN dataset, where 192 landmarks were employed for evaluation. From
these results, we see that our model obtains accurate landmark localization in such cases that more challenging correlation of neighbouring landmarks of
denser 192 annotations occurs than 68 annotations.

TABLE II

COMPARISONS OF PERCENTAGES OF IMAGES WHERE THE AVERAGE ERROR IS 0.05 AND 0.1 OF DIFFERENT DEEP LEARNING BASED FACE ALIGNMENT
METHODS. FOR CFAN [16] AND TCDCN [45], WE INVESTIGATED THE EVALUATIONS BASED ON THE RELEASED CODES. FOR DCRFA [36],

WE CAREFULLY IMPLEMENTED THE METHOD BY FOLLOWING THE SETTING IN [36]. SINCE THE CODE OF DFSM [20] HAS NOT BEEN

RELEASED, WE CROPPED THE RESULTS DIRECTLY FROM THE ORIGINAL PAPER. FROM THESE RESULTS, WE SEE THAT OUR

R-DSSD OBTAINS PROMISING RESULTS COMPARED WITH THE STATE-OF-THE-ART
METHODS ON THE LFPW AND HELEN DATASETS

Fig. 8. Example results in each row are aligned results for the samples in the COFW dataset, where 68 landmarks were employed for evaluation. Our model
achieves robustness to largely variations of face images caused by diverse partial occlusions, which benefits from the employed nonlinear global regression
mapping.

3) Evaluation on COFW [44]: To investigate the effective-
ness of our methods versus various occlusions on the COFW
dataset, where the facial images are occluded by the invisible
parts. Table III shows the averaged errors and failure rates [44].
From these results, we see that our method achieves better
performance than that of the state-of-the-art methods. Some
sample alignment results on the COFW dataset are shown
in Fig. 8. We see that our method accurately detects the
occluded landmarks even with the heavy occlusions. This is
because our model achieves the robustness to the face images
versus partial occlusions by exploiting both the local and
global information in the learned features, which verifies the
robustness of our framework on the occluded face images.

4) Analysis of the Sharable Detectors: To investigate the
importance of the sharable detectors, we conducted experi-
ments and compared the performance of our methods with
and without the sharable detectors. In terms of without the
sharable detectors, we improved CFAN by employing CNN
architecture instead of auto-encoder networks as the base-
line method, because CFAN [16] were trained by the joint
displacement of all landmarks without explicitly considering
the correlated relationship among neighbouring landmarks.
The parameters were configured according to [16] and [19].
Table IV tabulates the averaged results. From these results,
we see that the sharable detectors significantly improve the
landmark detection accuracy, especially in the challenging
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Fig. 9. CED curves of different stages in our R-DSSD tested on the LFPW, HELEN and IBUG datasets, respectively, where 68 annotated landmarks were
employed for evaluation.

TABLE III

COMPARISON OF THE AVERAGED ERRORS AND THE FAILURE RATES

ON THE COFW DATASET. OUR MODEL ACHIEVES ROBUSTNESS
TO VARYING PARTIAL OCCLUSIONS

TABLE IV

COMPARISONS OF AVERAGED ERRORS WITH AND WITHOUT SHARABLE
DETECTORS ON THE LFPW, HELEN AND IBUG DATASETS,

RESPECTIVELY, WHERE 68 ANNOTATED LANDMARKS

WERE EMPLOYED FOR EVALUATION

TABLE V

COMPARISON OF AVERAGED ERRORS WITHOUT ‖P‖1 ,
WITHOUT ‖C‖1 AND DSSD ON 300-W DATASET

IBUG dataset, which were captured under the large variances
of facial expressions and aspect ratios. In addition, we also
evaluated the effects of the regularization terms ‖P‖1 and
‖C‖1. Table V shows the performance of DSSD of both
penalties. According to the results, our method degrades
significantly when the �1 norm constraints are removed.

5) Analysis of the Cascaded R-DSSD: To evaluate the effec-
tiveness of the cascaded architecture, we first implemented the

TABLE VI

COMPARISON OF AVERAGED ERRORS OF SEQUENTIAL LEARNING

AND JOINT LEARNING ON 300-W DATASET

robust shape initialization to provide an initial shape. More-
over, we examined the performance of R-DSSD with different
network depths. Fig. 9 shows the CED curves of R-DSSD
on various datasets, where different stages were employed
for evaluation. We see that our R-DSSD with multiple stages
consistently outperforms R-DSSD with single stage because
the complementary information can be exploited from multi-
scale perspectives for accurate shape refinements. Moreover,
our R-DSSD with single stage achieves better performance
than that of the predicted initial shape, which shows the
effectiveness of our carefully designed deep architectures. This
is because the shape has been refined in a fixed size of local
patch on different scales of images in a coarse-to-fine way.

6) Comparisons With Different Learning Strategies: We
investigated the effectiveness of the proposed recurrent archi-
tecture. In this experiment, we compared of our method
with the sequential learning and the joint learning strategies.
Specifically, the sequential learning method separately learns
the parameters for each stage and then directly combines
them together, while the joint learning method jointly trains
the model parameters in an end-to-end manner. Table VI
tabulates the averaged errors of our recurrent learning with
other learning strategies. From these results, we see that the
recurrent architecture obtains better performance than that of
other learning strategies, which exhibits the effectiveness of
the designed recurrent manner.

7) Performance Effects for Different Parameters: We con-
ducted experiments to analyze different factors of our methods.
First, we set G = {5, 10, 20, 50, 68} to the number of the
latent tasks employed in the sharable detectors. Table VII
tabulates the results. According to these results, we see that
our method achieves the best performance when G was set
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TABLE VII

AVERAGING ERRORS DENOTED BY VARIOUS G EMPLOYED IN THE
SHARABLE DETECTORS TESTED ON THE 300-W FULLSET

TABLE VIII

AVERAGING ERRORS DENOTED BY VARIOUS K RELATED

TO DSSD (SINGE STAGE) TESTED ON 300-W FULLSET

to 20. We have also evaluated the variances of K on the
300-W fullset, which was employed in the structural feature
learning approach. Specifically, we set K = {1, 3, 5, 12, 68} to
the the number of neighbours for each landmark. Note that we
created the baseline method by setting K to 1, which means the
sharable detectors were directly fed with the extracted local
features without any feature selection approach. Table VIII
shows the averaged errors, respectively. According to the
results, we see that our method obtains the best performance
when K was set to 5, which also shows the effectiveness of
the structural learning. Moreover, the performance deteriorates
when K grows to {12, 68}. This is because more noise occurs
during the landmark localization with a large range of locality.

8) Computational Time: Our approach was implemented
on the Matlab platform with the DAGNN module of the
MatConvnet [53] deep learning toolbox. Our model with the
practical architecture R-DSSD∗ runs at around 40 frames
per second (FPS) with the Intel(R) Core(TM) i5-6500 CPU
@ 3.20GHz, which satisfies the real-time requirements.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a deep feature learn-
ing method for face alignment, dubbed deep sharable and
structural detectors (DSSD), where the semantic informa-
tion and correlation of neighbouring landmarks are exploited
for facial landmark localization. To further improve the
alignment performance, we have extended our DSSD to a
recurrent DSSD (R-DSSD) architecture, which integrates the
learned pose-informative feature representations with multi-
scale information and efficiently controls the capacity of the
cascaded deep architecture. Experimental results on both the
public benchmark datasets including the 300-W dataset and
the COFW dataset verify the effectiveness of the proposed
methods compared with the state-of-the-art face alignment
methods.

There are two interesting directions for our further work:

1 Our proposed R-DSSD is built based on the recurrent
architecture and it is interesting to apply it to video-
based face alignment by using the feedback architecture
to further improve the effectiveness.

2 Our proposed framework works well for the near-front
facial images. How to apply it to detect the facial

landmarks for the facial images which were captured in
unconstrained conditions is the interesting future work.
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